Dezimalzahlen sind im Alltag allgegenwärtig. Sie werden auch Dezimalbrüche genannt, da sie eng mit den Brüchen verwandt sind. Dezimalbrüche bestehen aus 3 Teilen: Die Vorkommastelle zeigt die ganzen Zahlen, die Nachkommastelle zeigt die Brüche, die Vor- und Nachkommastelle werden durch das Komma getrennt. Die Stellen hinter dem Komma stellen jeweils die Brüche 1/10, 1/100, 1/1000, ... dar. Es können aber auch alle beliebigen Brüche als Dezimalzahlen dargestellt werden. Bei manchen Brüchen entstehen Zahlen, die hinter dem Komma unendlich weiter gehen, zum Beispiel 1/3 = 0,333333..., diese Zahlen werden periodische (unendliche) Dezimalbrüche genannt.
Das Umwandeln von Brüchen in Dezimalbrüche ist oft durch Erweitern bzw. Kürzen möglich, ansonsten wird der Zähler durch den Nenner geteilt und es entsteht ein Dezimalbruch.
Die Einführung der Dezimalbrüche erweitert die Stellenwerttabelle nach rechts. Die Stellen nach dem Komma werden mit den entsprechenden Kleinbuchstaben benannt (z, h, t, ...). Eine Begrenzung an Stellen ist weder vor noch nach dem Komma nötig. Die Zahl null kann nach dem Komma weggelassen werden, wenn keine andere Zahl folgt (5,382000 = 5,382).
Nur bei Geldbeträgen wird hinter dem Komma immer auf die zweite Nachkommastelle gerundet: Also nicht 3,5 €, sondern 3,50 €. Auch wird 3,4382 € nicht verwendet, da es für diese Nachkommastellen keine Münzen mehr gibt. Eine Ausnahme ist dabei aber der Benzinpreis, der stets auf eine Stelle nach dem Cent angezeigt wird: 1,169 €. Die letzte Nachkommastelle wird allerdings immer sehr klein dargestellt.